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Abstract .  F r o m  a comparison of theoret ical  and observed microwave 

br ightness  tempera tures  of Venus at 1 .35  cm, the center  of a water-vapor  

line, we obtain an upper l imit  of 0 . 8  percent  to the water-vapor  mixing ra t io  

in the lower atmosphere.  This limit is consistent with the amount of water  

vapor detected by Venera 4, the existence of water  ice  clouds, and a green-  

house effect caused by water vapor and carbon dioxide. The computed spec t r a  

suggest that a sensi t ive procedure f o r  detecting water  vapor  is an examination 

of the 1 - c m  to 1 . 4 - c m  wavelength region. 
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As  a resu l t  of the data  obtained by the Venera 4 (1,z) and Mar ine r  V 

spacecraf t  ( 3 ) ,  - we now know the atmospheric  s t ruc tu re  of Venus sufficiently 

well to pe rmi t  the construction of rather unambiguous microwave spec t ra .  

In this paper we compute brightness tempera ture  spec t r a  s o  as to set limits 

on the amount of water  vapor in the lower atmosphere.  

compared with the amount of water vapor detected by Venera 4. 

These values a r e  

In accord with the high temperature  conditions found by Venera 4 and 

Mar ine r  V, we assumed that the radio emiss ion  f r o m  Venus emanates  

f r o m  a hot su r face  and atmosphere and that the decline in brightness t empera -  

t u r e  at wavelengths shortward of 3 c m  is attr ibutable t o  a tmospheric  opacity. 

W e  now descr ibe  our  method of calculation. 

To  compute the brightness temperature ,  we integrated analytically Eq. 3 

of a paper  by Pollack and Sagan (4) over the disk and used a constant soiid- 

angle average emissivity.  

microwave opacity a t  each  atmospheric level, the atmospheric  s t ruc ture ,  

and the sur face  emissivity.  

The brightness tempera ture  is a function of the 

We considered three sources  of microwave opacity: pressure- induced 

t ransi t ions of carbon dioxide and nitrogen, and permit ted,  rotational transit ions 

of water  vapor.  

mixture ,  we used the empir ical  formula of Ho et al. (5). B a r r e t t  and Staelin 

(6) presented an  equation fo r  the absorption coefficient of water  vapor, sug-  

gested by Chung (7). 

due to the 1. 35-cm line, and a nonresonant component, due to the overlapping 

wings of l ines at sho r t e r  wavelengths. 

theoretically and adjusted one parameter  to give a good f i t  with a laboratory 

spec t rum nea r  STP .  To tes t  the validity of the formula  at high p r e s s u r e s  

and elevated tempera tures  , we compared i t  with the laboratory resu l t s  of 

Ho et  al .  (5). At the high pressures  (45 to 125 atm),  t empera tures  (393°K to 

473"K), and wavelength (3.2 cm) used in the la t te r  measurement ,  the non- 

resonant  component is dominant; Ho et  al. have no d i r e c t  es t imate  of the 

resonant  t e r m .  

F o r  the absorption coefficient of a carbon dioxide-nitrogen 

-- - 

The absorption coefficient consis ts  of a resonant  term, 

Chung derived his  expression 

We find very  good agreement  between the two formulas  
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near  room tempera ture ,  but marked disagreement  in the t empera tu re  depen- 

dence of the absorption coefficient. 

formula  in our  computations, with the tempera ture  dependence of the l ine- 

Accordingly, we have used Chung's 

width pa rame te r ,  Av, modified f rom T- o * 6 2 5 ,  a s  given by Chung, to T -2 .5  
> 

a s  found by Ho -- e t  al .  (5). 

The atmospheric  s t ruc tu re  w a s  chosen to f i t  the measurements  of 

Venera 4 (1 ,2)  - -  and Mar ine r  V (2) quite closely.  

s u r e s  a t  the position measured  by Mariner  V probably closely resemble  the 

average proper t ies  of the atmosphere:  

diurnal  variations (A), a s  would be expected on the bas i s  of the la rge  heat  

capacity of the atmosphere.  Fur thermore ,  the measurements  were  performed 

a t  a midlatitude position of 37". We w i l l  consider two models:  F o r  Model I, 

the average  su r face  tempera ture  equals the sur face  tempera ture  a t  the posi-  

tion viewed by Mar ine r  V. 
average su r face  tempera ture  2 5 "  K lower than does Model I. 

The tempera tures  and p r e s -  

The atmosphere exhibits no appreciable 

Model I1 differs  f r o m  Model I only in  having a n  

We now descr ibe  the detailed properties of Model I. The re  a r e  three 

tempera ture  domains:  

4 .05 a t m  and extending to the surface (2), a constant lapse r a t e  of 7 .9"K/km 

between the top of the adiabatic region and the tropopause tempera ture  point 

of 23O"K, and an i so thermal  profile above the tropopause (2). 
the carbon dioxide mixing rat io  was 85 percent ,  with the remainder  of the 

a tmosphere  consisting of water  vapor and nitrogen (l-,2,2). 
a t  the 5 .08  a tm level was chosen as  437°K (3). 

est imated the sur face  tempera ture  and p r e s s u r e  for  us  by means  of a com- 

puter p rogram fo r  adiabatic profiles, which allowed fo r  the var ia t ion of the 

rat io  of specif ic  heats with temperature  and p r e s s u r e .  Extrapolating f r o m  

the 5.08-atm point to the r a d a r  radius of Venus e), he obtained a sur face  

t empera tu re  of 747" K and a surface p r e s s u r e  of 91 .2  a tm.  

computer  p r o g r a m  a l so  allowed for  a var iable  specific heats ra t io  within the 

adiabatic portion of the atmosphere.  

an adiabatic regime beginning a t  the p r e s s u r e  level of 

We assumed 

The tempera ture  

Richard Wattson (8) 

We note that our  

We selected a value of 0 .82  for the sur face  emissivi ty:  The f r e sne l  

ref lect ivi ty  equations were  used to average over  solid angle a r a d a r  c r o s s  

sect ion of 0 .14 a t  70-cm wavelength (10). 
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A mos t  important feature  of our calculations was the allowance for  a 

rapid dec rease  in the water-vapor  mixing rat io  above the level a t  which 

saturat ion is first reached. Since the resonant  t e r m  of the water-vapor  

absorption coefficient var ies  inversely with p r e s s u r e  nea r  the 1 .35 -cm line 

center ,  regions of low p res su re  can significantly influence the microwave 

spec t rum near  this wavelength. 

relatively shallow dips in the brightness tempera ture  near  1. 35 cm. 

By allowing fo r  saturat ion,  we obtained only 

Once saturat ion is attained, condensation will occur  and the wa te r -  

vapor par t ia l  p r e s s u r e  will follow a saturat ion curve to the cloud tops. By 
analogy with the ea r th  (ll), the relative humidity in the s t ra tosphere  would 

probably be quite low. Finally,  a t  sufficiently high alt i tudes,  photodissociation 

of water  vapor will occur.  

by having the water-vapor  mixing ratio dec rease  exponentially above the 

saturat ion point with a 1 - k m  sca le  height, a value appropriate  f o r  the water -  

vapor saturat ion curve.  

of 4 did not significantly a l t e r  the computed spec t ra .  

We have attempted to s imulate  the above situation 

Changes in the value of the sca le  height by a factor  

We performed spec t ra l  calculations of br ightness  tempera ture  with a 

computer program writ ten initially by Andrea Dupree,  and modified sub-  

stantially by one of the authors (A. T. W. ). Integration s tep  s i zes  of 1 k m  

were  used in performing the vertical  integration. 

F igu res  1 and 2 present  the resul ts  of the calculated br ightness  tempera-  

tu re  spec t r a  for  s ix  values of the water-vapor mixing rat io:  0 percent,  0. 1 p e r -  

cent,  0 .  3 percent,  0 . 5  percent,  1 percent, and 3 percent.  Also given a r e  m e a s -  

urements  of br ightness  temperature  near  infer ior  conjunction with the es t i -  

mated e r r o r s ,  which were taken f r o m  a compilation by Dickel (12).  - 
puted curves  a r e  ra ther  insensitive to the exact  choice of input pa rame te r s ,  

especial ly  in the 0 .8 -cm to 1 .4-cm wavelength range. F o r  the cases  of l a r g e r  

water-vapor  mixing rat ios ,  l e s s  than a 15°K change in br ightness  tempera-  

t u r e  resul ted in this range when the following changes were  simultaneously 

made:  the sur face  tempera ture  decreased to 543°K (the value est imated by 

the Venera 4 exper imenters ) ;  the sur face  p r e s s u r e  lowered to  20 atm; the 

The corn- 
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emissivi ty  increased  t o  0.  9 ;  the carbon dioxide mixing ra t io  changed by 

f 15 percent,  a constant lapse r a t e  used between tropopause and sur face ;  

and the tropopause tempera ture  changed by 15°K. 

resul ted for  the cases  of lower water-vapor mixing rat io ,  especial ly  when 

the carbon dioxide mixing ratio o r  atmospheric s t ruc tu re  was al tered.  

Somewhat l a r g e r  changes 

An interesting fea ture  of F igs .  1 and 2 is the sl ight displacement  sho r t -  

ward of 1.  35 c m  of the center  of the absorption f ea tu re  fo r  c a s e s  of low 

water  -vapor mixing ratio.  

a t  1.  3 c m  for  the 0. 3 percent  case.  This resu l t s  f r o m  the influence of the* 

steady increase  in br ightness  temperature  toward longer wavelength supe r -  

imposed on the d e c r e a s e  caused by the resonance line. 

F o r  example, the absorption minimum is located 

We now s e t  l imits  on the water-vapor mixing rat io  in the lower a tmos-  

Because of the shallowness of the absorption feature  nea r  phere of Venus. 

1 .  35 c m  in the computed spec t ra ,  the depth of the fea ture  i s  not a very  useful 

discr iminant  with the p re sen t  s e t  of data. 

absolute value of the br ightness  tempera ture  at 1.  35 cm: The curves  of F igs .  

1 and 2 a r e  markedly different a t  this wavelength, and a s  mentioned above 

the values of the br ightness  temperature  he re  a r e  relatively independent of 

the exact  values of the input parameters .  

t u re s  have been measured  near  inferior conjunction a t  o r  quite c lose to 

1 .35  c m :  520 f 40°K (13), - 435 f 40°K (14), - 404 f 28°K (15), - 500 f 70°K and 

560 f 48°K (16),  - and 436 f 39°K (17). - Accordingly, the br ightness  tempera-  

tu re  a t  1 .35 cm is probably in excess  of 375°K and water-vapor  mixing ra t ios  

in the lower atmosphere g rea t e r  than 0 . 8  percent  can be excluded. 

tunately, the present  observations do not permi t  the sett ing of a lower bound 

other  than 0 percent.  

A m o r e  useful c r i te r ion  is the 

The following br ightness  tempera-  

Unfor- 

The above upper l imit  is compatible with a value of between 0 .1  percent  

and 0 . 7  percent  determined by the chemical  analysis  experiment  aboard 

Venera 4 ( i ,  - -  2). 

clouds in the upper a tmosphere of Venus. 

bottom tempera tures  below the equilibrium freezing point of water  and s o ,  
except fo r  possibly some supercooled droplets ,  they would consis t  of ice 

It  a lso does not exclude the presence  of water  condensation 

Such clouds would have cloud- 
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par t ic les .  

vapor ,  about 0 . 5  percent,  required fo r  a carbon dioxide, water-vapor  green-  

house effect (18). - 

Finally,  the above limit does not exclude mixing ra t ios  of water  

Above, we have considered models having water  -vapor mixing ra t ios  of 

0 .1  percent  o r  m o r e  for  which condensation can  be expected to occur  in  the 

upper  a tmosphere.  However, the occurrence of condensation for  ra t ios  

between 0.001 percent  and 0 .1  percent  is uncertain and depends on the exact 

choice of tropopause tempera ture .  

high s o  a s  to preclude condensation f o r  some of these ra t ios ,  these c a s e s  

could be immediately ruled out a s  being inconsistent with the smal l ,  spec t ro -  

scopically determined amounts of water vapor in the upper portion of the 

a tmosphere  (19). - 
0.001 percent ,  and conceivably spec t ra  produced f o r  such  models would con- 

tain ve ry  deep, nar row absorption fea tures  nea r  1 .35 c m .  However, the i r  

widths would be much s m a l l e r  than typical instrumental  bandwidths (17), - and 

s o  a much shallower line would result .  

prevent the formation of such an  intrinsically deep line by causing a depletion 

of water  vapor in the region of line formation. 

Were  the tropopause tempera ture  to be too 

Finally, no condensation will occur  with values l e s s  than 

In addition, photodissociation may 

The calculated spec t ra  show very broad, shallow depress ions  nea r  1.35 

cm.  

a t  wavelengths centered around and quite c lose  to 1 .35 cm. 

profitable procedure would be to investigate the region between 1 and 1 . 4  cm. 

F o r  example,  the brightness temperature  declines by 50°K for  the 0 percent  

c a s e  between 1 . 4  and 1 cm,  but increases  by 5°K fo r  the 0 . 5  percent  ca se .  

Table 1 presents  values of the ratio of the br ightness  tempera ture  a t  1 .4  c m  

to that a t  1 cm,  a s  well a s  the absolute value of the br ightness  t empera tu re  a t  

1 c m .  

Previous sea rches  fo r  the presence of water  vapor have been conducted 

Perhaps  a m o r e  

J. B. Pollack 
A. T. Wood, Jr .  

Smithsonian Astrophysical Observatory 
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Harvard  College Observatory, 
Cambridge, Mas sachus e tts 

Harvard College Observatory, 
Cambridge, Massachusetts 
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Table 1. Computed br ightness  tempera tures  a t  a wavelength of 1 cm, 

T (1.0) and the ra t io  of br ightness  tempera tures  at 1 . 4  and 1 .0  cm, TB(1.4) /  
TB( l .  0).  B 

.I. T B ( l o o )  (OK) T g ( l *  4 ) / T g ( l  0) 
aHZO Model t Model 

1. 

(percent) I II I I1 

0 483 459 1.102 1.107 

0 .1  4 64 442 1.061 1.064 

0 . 3  438 419 1.009 1.027 

0 . 5  421 403 0.976 0.996 

1 .0  395 378 0.939 0.962 

3.0 352 338 0.916 0.941 

.L .I. 

Water-vapor  mixing ra t io  in the lower a tmosphere.  

'Model I uses  the value at the locale explored by Mar ine r  V as the average  
surface tempera ture ,  while Model I1 uses  a n  average  sur face  t empera tu r t  
that  is 25°K lower. 
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